LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

THIRD SEMESTER - JUNE 2015

MT 3503 - VECTOR ANALYSIS & ORDINARY DIFF. EQUATIONS

Date: 01/07/2015	Dept. No.	Max.: 100 Marks

Time: 10:00-01:00

PART - A

ANSWER ALL THE QUESTIONS

 $(10 \times 2 = 20)$

- 1. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, show that $\nabla x\vec{r} = \vec{0}$.
- 2. If the vector $3x\vec{i} + (x+y)\vec{j} az\vec{k}$ is solenoidal, then find the value of a.
- 3. What is the necessary and sufficient condition for the line integral to be independent of path of integration?
- 4. Define conservative field and scalar potential.
- 5. State Gauss theorem.
- 6. State Stoke's theorem.

7. Solve
$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$
.

- 8. Solve $\frac{dy}{dx} + y \cot x = 4x \cos ecx$.
- 9. Solve $(D^2 + 5D + 6)y = 0$.
- 10. Find the particular integral of $(D^2 + 4)y = Sin2x$.

$\underline{PART - B}$

ANSWER ANY FIVE QUESTIONS

 $(5 \times 8 = 40)$

11. If
$$\nabla \phi = (y + y^2 + z^2)\vec{i} + (x + z + 2xy)\vec{j} + (y + 2zx)\vec{k}$$
 and if $\phi(1,1,1) = 3$, find ϕ .

12. If
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
 and $r = |r|$, show that $\nabla \cdot (r^n \vec{r}) = (n+3)r^n$

- 13. Verify Green's theorem in the plane for the integral $\int_C (xy + y^2) dx + x^2 dy$, where C is the curve enclosing the region R bounded by the parabola $y = x^2$ and the line y = x.
- 14. Evaluate $\iiint_V \vec{F} \cdot dv$, where $\vec{F} = 2xz\vec{i} x\vec{j} + y^2\vec{k}$ and V is the volume of the region enclosed by the cylinder $x^2 + y^2 = a^2$ between the planes z = 0, z = c.

15. Solve
$$xp^2 - yp - x = 0$$
.

16. Solve
$$(px-y)(py+x)=2p$$
.

17. Solve
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} = x + 1$$
.

18. Solve
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^x \cos 2x$$

PART - C

ANSWER ANY TWO QUESTIONS

 $(2x\ 20 = 40)$

- 19. (a) In the vector field $\vec{F} = z(x\vec{i} + y\vec{j} + z\vec{k})$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the following curves.
 - (i) Curves x = t, $y = t^2$, $z = t^3$ from (0,0,0) to (1,1,1).
 - (ii) Rectilinear curve obtained by joining O (0,0,0), A(1,0,0), B(1,1,0), C (1,1,1) by straight lines.
 - (b) Evaluate $\iint_S \vec{F} \cdot n \, dS$ where $\vec{F} = (x+y)\vec{i} + x\vec{j} + z\vec{k}$ and S is the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 20. Verify Stoke's theorem for $\vec{A} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ taken over the upper half surface of the sphere $x^2+y^2+z^2=1$, $z \ge 0$ and the boundary curve C, the $x^2+y^2=1$, z=0.
- 21. (a) Solve $\frac{dy}{dx} = 2y \tan x + y^2 \tan^2 x$ given y = 1 when x = 0.
 - (b) Solve $(1+e^xy+xe^xy)dx+(xe^x+2)dy=0$.
- 22. (a) Solve $(x^2D^2 2xD 4)y = x^2 + 2\log x$.
 - (b) Solve $\frac{d^2y}{dx^2} + a^2y = \sec ax$, using variation of parameters.

\$\$\$\$\$\$\$\$